Altered hippocampal synaptic plasticity in the FMR1 gene family knockout mouse models.

نویسندگان

  • Jing Zhang
  • Lingfei Hou
  • Eric Klann
  • David L Nelson
چکیده

Fragile X syndrome (FXS) is the most common form of inherited mental retardation. The syndrome results from the absence of the fragile X mental retardation protein (FMRP), which is encoded by the fragile X mental retardation 1 (FMR1) gene. FMR1 and its two paralogs, fragile X-related genes 1 and 2 (FXR1 and -2), form the Fmr1 gene family. Here, we examined long-lasting synaptic plasticity in Fmr1 knockout, Fxr2 knockout, and Fmr1/Fxr2 double knockout mice. We found that metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) in the hippocampus was affected in Fmr1 knockout, Fxr2 knockout, and Fmr1/Fxr2 double knockout mice at young ages (4-6 wk old). In addition, Fmr1/Fxr2 double knockout mice showed significant deficiencies relative to either Fmr1 or Fxr2 knockout mice in baseline synaptic transmission and short-term presynaptic plasticity, suggesting FMRP and FXR2P may contribute in a cooperative manner to pathways regulating presynaptic plasticity. However, compared with wild-type littermates, late-phase long-term potentiation (L-LTP) was unaltered in all knockout mice at 4-6 mo of age. Interestingly, although Fmr1/Fxr2 double knockout mice exhibited a more robust enhancement in mGluR-LTD compared with that in Fmr1 knockout mice, Fxr2 knockout mice exhibited reduced mGluR-LTD. Furthermore, unlike Fmr1 knockout mice, mGluR-LTD in Fxr2 knockout mice required new protein synthesis, whereas mGluR-LTD in Fmr1/Fxr2 double knockout mice was partially dependent on protein synthesis. These results indicated that both FMRP and FXR2P function in synaptic plasticity and that they likely operate in related but independent pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Failed Stabilization for Long-Term Potentiation in the Auditory Cortex of Fmr1 Knockout Mice

Fragile X syndrome is a developmental disorder that affects sensory systems. A null mutation of the Fragile X Mental Retardation protein 1 (Fmr1) gene in mice has varied effects on developmental plasticity in different sensory systems, including normal barrel cortical plasticity, altered ocular dominance plasticity and grossly impaired auditory frequency map plasticity. The mutation also has di...

متن کامل

Early postnatal plasticity in neocortex of Fmr1 knockout mice.

Fragile X syndrome is produced by a defect in a single X-linked gene, called Fmr1, and is characterized by abnormal dendritic spine morphologies with spines that are longer and thinner in neocortex than those from age-matched controls. Studies using Fmr1 knockout mice indicate that spine abnormalities are especially pronounced in the first month of life, suggesting that altered developmental pl...

متن کامل

Proteomics, ultrastructure and physiology of hippocampal synapses in a Fragile X Syndrome mouse model reveals pre-synaptic phenotype

Fragile X Syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes Fragile X Mental Retardation Protein (FMRP). FMRP affects dendritic protein synthesis thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal syn...

متن کامل

Impaired activity-dependent FMRP translation and enhanced mGluR-dependent LTD in Fragile X premutation mice.

Fragile X premutation-associated disorders, including Fragile X-associated Tremor Ataxia Syndrome, result from unmethylated CGG repeat expansions in the 5' untranslated region (UTR) of the FMR1 gene. Premutation-sized repeats increase FMR1 transcription but impair rapid translation of the Fragile X mental retardation protein (FMRP), which is absent in Fragile X Syndrome (FXS). Normally, FMRP bi...

متن کامل

FINAL ACCEPTED VERSION JN-00221-2006.R1 Early postnatal plasticity in neocortex of Fmr1 knockout mice

Fragile X syndrome is produced by a defect in a single X-linked gene, called Fmr1, and is characterized by abnormal dendritic spine morphologies, with spines that are longer and thinner in neocortex than those from age-matched controls. Studies using Fmr1 knockout mice indicate that spine abnormalities are especially pronounced in the first month of life, suggesting that altered developmental p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 101 5  شماره 

صفحات  -

تاریخ انتشار 2009